Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.937
Filtrar
1.
Nat Commun ; 15(1): 3226, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622132

RESUMO

The tumor microenvironment plays a crucial role in determining response to treatment. This involves a series of interconnected changes in the cellular landscape, spatial organization, and extracellular matrix composition. However, assessing these alterations simultaneously is challenging from a spatial perspective, due to the limitations of current high-dimensional imaging techniques and the extent of intratumoral heterogeneity over large lesion areas. In this study, we introduce a spatial proteomic workflow termed Hyperplexed Immunofluorescence Imaging (HIFI) that overcomes these limitations. HIFI allows for the simultaneous analysis of > 45 markers in fragile tissue sections at high magnification, using a cost-effective high-throughput workflow. We integrate HIFI with machine learning feature detection, graph-based network analysis, and cluster-based neighborhood analysis to analyze the microenvironment response to radiation therapy in a preclinical model of glioblastoma, and compare this response to a mouse model of breast-to-brain metastasis. Here we show that glioblastomas undergo extensive spatial reorganization of immune cell populations and structural architecture in response to treatment, while brain metastases show no comparable reorganization. Our integrated spatial analyses reveal highly divergent responses to radiation therapy between brain tumor models, despite equivalent radiotherapy benefit.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Camundongos , Proteômica , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/patologia , Glioblastoma/diagnóstico por imagem , Glioblastoma/radioterapia , Glioblastoma/patologia , Encéfalo/patologia , Imunofluorescência , Microambiente Tumoral
2.
Methods Cell Biol ; 185: 99-113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556454

RESUMO

Radiotherapy is a crucial treatment modality for cancer patients, with approximately 60% of individuals undergoing ionizing radiation as part of their disease management. In recent years, there has been a growing trend toward minimizing irradiation fields through the use of image-guided dosimetry and innovative technologies. These advancements allow for selective irradiation, delivering higher local doses while reducing the number of treatment sessions. Consequently, computer-assisted methods have significantly enhanced the effectiveness of radiotherapy in the curative and palliative treatment of various cancers. Although radiation therapy alone can effectively achieve local control in some cancer types, it may not be sufficient for others. As a result, further preclinical research is necessary to explore novel approaches including new schedules of radiotherapy treatments. Unfortunately, there is a concerning lack of correlation between clinical outcomes and experiments conducted on mouse models. We hypothesize that this disparity arises from the differences in irradiation strategies employed in preclinical studies compared to those used in clinical practice, which ultimately affects the translatability of findings to patients. In this study, we present two comprehensive radiotherapy protocols for the treatment of orthotopic melanoma and glioblastoma tumors. These protocols utilize a small animal radiation research platform, which is an ideal radiation device for delivering localized and precise X-ray doses to the tumor mass. By employing these platforms, we aim to limit the side effects associated with irradiating healthy surrounding tissues. Our detailed protocols offer a valuable framework for conducting preclinical studies that closely mimic clinical radiotherapy techniques, bridging the gap between experimental results and patient outcomes.


Assuntos
Glioblastoma , Radioterapia Guiada por Imagem , Camundongos , Humanos , Animais , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Glioblastoma/patologia , Glioblastoma/radioterapia , Modelos Animais de Doenças
3.
Neuro Oncol ; 26(12 Suppl 2): S3-S16, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38437669

RESUMO

Chemoradiotherapy is the standard treatment after maximal safe resection for glioblastoma (GBM). Despite advances in molecular profiling, surgical techniques, and neuro-imaging, there have been no major breakthroughs in radiotherapy (RT) volumes in decades. Although the majority of recurrences occur within the original gross tumor volume (GTV), treatment of a clinical target volume (CTV) ranging from 1.5 to 3.0 cm beyond the GTV remains the standard of care. Over the past 15 years, the incorporation of standard and functional MRI sequences into the treatment workflow has become a routine practice with increasing adoption of MR simulators, and new integrated MR-Linac technologies allowing for daily pre-, intra- and post-treatment MR imaging. There is now unprecedented ability to understand the tumor dynamics and biology of GBM during RT, and safe CTV margin reduction is being investigated with the goal of improving the therapeutic ratio. The purpose of this review is to discuss margin strategies and the potential for adaptive RT for GBM, with a focus on the challenges and opportunities associated with both online and offline adaptive workflows. Lastly, opportunities to biologically guide adaptive RT using non-invasive imaging biomarkers and the potential to define appropriate volumes for dose modification will be discussed.


Assuntos
Glioblastoma , Neurologia , Radioterapia (Especialidade) , Humanos , Glioblastoma/radioterapia , Quimiorradioterapia
4.
Neuro Oncol ; 26(12 Suppl 2): S17-S25, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38437666

RESUMO

Advances in diagnostic and treatment technology along with rapid developments in translational research may now allow the realization of precision radiotherapy. Integration of biologically informed multimodality imaging to address the spatial and temporal heterogeneity underlying treatment resistance in glioblastoma is now possible for patient care, with evidence of safety and potential benefit. Beyond their diagnostic utility, several candidate imaging biomarkers have emerged in recent early-phase clinical trials of biologically based radiotherapy, and their definitive assessment in multicenter prospective trials is already in development. In this review, the rationale for clinical implementation of candidate advanced magnetic resonance imaging and positron emission tomography imaging biomarkers to guide personalized radiotherapy, the current landscape, and future directions for integrating imaging biomarkers into radiotherapy for glioblastoma are summarized. Moving forward, response-adaptive radiotherapy using biologically informed imaging biomarkers to address emerging treatment resistance in rational combination with novel systemic therapies may ultimately permit improvements in glioblastoma outcomes and true individualization of patient care.


Assuntos
Glioblastoma , Radioterapia (Especialidade) , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/radioterapia , Estudos Prospectivos , Imagem Multimodal , Biomarcadores , Estudos Multicêntricos como Assunto
5.
BMJ Open ; 14(3): e078926, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38458809

RESUMO

INTRODUCTION: Glioblastoma (GBM) is the most common adult primary malignant brain tumour. The condition is incurable and, despite aggressive treatment at first presentation, almost all tumours recur after a median of 7 months. The aim of treatment at recurrence is to prolong survival and maintain health-related quality of life (HRQoL). Chemotherapy is typically employed for recurrent GBM, often using nitrosourea-based regimens. However, efficacy is limited, with reported median survivals between 5 and 9 months from recurrence. Although less commonly used in the UK, there is growing evidence that re-irradiation may produce survival outcomes at least similar to nitrosourea-based chemotherapy. However, there remains uncertainty as to the optimum approach and there is a paucity of available data, especially with regards to HRQoL. Brain Re-Irradiation Or Chemotherapy (BRIOChe) aims to assess re-irradiation, as an acceptable treatment option for recurrent IDH-wild-type GBM. METHODS AND ANALYSIS: BRIOChe is a phase II, multi-centre, open-label, randomised trial in patients with recurrent GBM. The trial uses Sargent's three-outcome design and will recruit approximately 55 participants from 10 to 15 UK radiotherapy sites, allocated (2:1) to receive re-irradiation (35 Gy in 10 daily fractions) or nitrosourea-based chemotherapy (up to six, 6-weekly cycles). The primary endpoint is overall survival rate for re-irradiation patients at 9 months. There will be no formal statistical comparison between treatment arms for the decision-making primary analysis. The chemotherapy arm will be used for calibration purposes, to collect concurrent data to aid interpretation of results. Secondary outcomes include HRQoL, dexamethasone requirement, anti-epileptic drug requirement, radiological response, treatment compliance, acute and late toxicities, progression-free survival. ETHICS AND DISSEMINATION: BRIOChe obtained ethical approval from Office for Research Ethics Committees Northern Ireland (reference no. 20/NI/0070). Final trial results will be published in peer-reviewed journals and adhere to the ICMJE guidelines. TRIAL REGISTRATION NUMBER: ISRCTN60524.


Assuntos
Glioblastoma , Reirradiação , Adulto , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/radioterapia , Qualidade de Vida , Recidiva Local de Neoplasia/tratamento farmacológico , Encéfalo , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como Assunto , Ensaios Clínicos Fase II como Assunto
6.
Chin Clin Oncol ; 13(1): 11, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38453659

RESUMO

Glioblastoma is the most common primary brain tumor with an estimated 14,000 Americans diagnosed with this disease annually. This disease is treated with maximal surgical resection followed by adjuvant radiation therapy. Radiation therapy was initially delivered to the whole brain and with no concurrent or adjuvant systemic therapy. Advances in imaging and treatment delivery have allowed for partial brain irradiation to minimize radiation dose to normal structures, as well as sparing structures important for memory such as the hippocampus, decreasing morbidity and toxicity. While there is no consensus on the optimal radiation volume needed to successfully treat glioblastoma, there is consensus that the tumor bed with margin is preferable to treatment of the whole brain. Additionally, advances in knowledge regarding tumor biology have demonstrated the benefit of concurrent and adjuvant chemotherapy, as well as demonstrated that methylation of genes in the tumor can predispose greater responsiveness to chemotherapy. The following review describes the advancements in specific radiation techniques that have been used to improve the therapeutic ratio for management of glioblastoma and methods used to personalize radiation treatment for patients based on genomic markers as well as clinical factors. The review also describes future investigations that are currently taking place in order to enable a further improvement of clinical outcomes for patients with glioblastoma.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/radioterapia , Glioblastoma/patologia , Terapia Combinada , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/patologia , Quimioterapia Adjuvante
7.
Sci Transl Med ; 16(734): eadj5962, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38354228

RESUMO

ATM is a key mediator of radiation response, and pharmacological inhibition of ATM is a rational strategy to radiosensitize tumors. AZD1390 is a brain-penetrant ATM inhibitor and a potent radiosensitizer. This study evaluated the spectrum of radiosensitizing effects and the impact of TP53 mutation status in a panel of IDH1 wild-type (WT) glioblastoma (GBM) patient-derived xenografts (PDXs). AZD1390 suppressed radiation-induced ATM signaling, abrogated G0-G1 arrest, and promoted a proapoptotic response specifically in p53-mutant GBM in vitro. In a preclinical trial using 10 orthotopic GBM models, AZD1390/RT afforded benefit in a cohort of TP53-mutant tumors but not in TP53-WT PDXs. In mechanistic studies, increased endogenous DNA damage and constitutive ATM signaling were observed in TP53-mutant, but not in TP53-WT, PDXs. In plasmid-based reporter assays, GBM43 (TP53-mutant) showed elevated DNA repair capacity compared with that in GBM14 (p53-WT), whereas treatment with AZD1390 specifically suppressed homologous recombination (HR) efficiency, in part, by stalling RAD51 unloading. Furthermore, overexpression of a dominant-negative TP53 (p53DD) construct resulted in enhanced basal ATM signaling, HR activity, and AZD1390-mediated radiosensitization in GBM14. Analyzing RNA-seq data from TCGA showed up-regulation of HR pathway genes in TP53-mutant human GBM. Together, our results imply that increased basal ATM signaling and enhanced dependence on HR represent a unique susceptibility of TP53-mutant cells to ATM inhibitor-mediated radiosensitization.


Assuntos
Glioblastoma , Piridinas , Quinolonas , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/radioterapia , Transdução de Sinais , Reparo do DNA/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
8.
Phys Med ; 119: 103316, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340693

RESUMO

PURPOSE: MRI-linear accelerator (MRI-Linac) systems allow for daily tracking of MRI changes during radiotherapy (RT). Since one common MRI-Linac operates at 0.35 T, there are efforts towards developing protocols at that field strength. In this study we demonstrate the implementation of a post-contrast 3DT1-weighted (3D-T1w) and dynamic contrast-enhancement (DCE) protocol to assess glioblastoma response to RT using a 0.35 T MRI-Linac. METHODS AND MATERIALS: The protocol implemented was used to acquire 3D-T1w and DCE data from a flow phantom and two patients with glioblastoma (a responder and a non-responder) who underwent RT on a 0.35 T MRI-Linac. The detection of post-contrast-enhanced volumes was evaluated by comparing the 3DT1w images from the 0.35 T MRI-Linac to images obtained using a 3 T scanner. The DCE data were tested temporally and spatially using data from a flow phantom and patients. Ktrans maps were derived from DCE at three time points (a week before treatment-Pre RT, four weeks through treatment-Mid RT, and three weeks after treatment-Post RT) and were validated with patients' treatment outcomes. RESULTS: The 3D-T1w contrast-enhancement volumes were visually and volumetrically similar between 0.35 T MRI-Linac and 3 T. DCE images showed temporal stability, and associated Ktrans maps were consistent with patient response to treatment. On average, Ktrans values showed a 54 % decrease and 8.6 % increase for a responder and non-responder respectively when Pre RT and Mid RT images were compared. CONCLUSION: Our findings support the feasibility of obtaining post-contrast 3D-T1w and DCE data from patients with glioblastoma using a 0.35 T MRI-Linac system.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/radioterapia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Meios de Contraste , Imageamento por Ressonância Magnética/métodos , Perfusão
9.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38396757

RESUMO

The hypoxic pattern of glioblastoma (GBM) is known to be a primary cause of radioresistance. Our study explored the possibility of using gene knockdown of key factors involved in the molecular response to hypoxia, to overcome GBM radioresistance. We used the U87 cell line subjected to chemical hypoxia generated by CoCl2 and exposed to 2 Gy of X-rays, as single or combined treatments, and evaluated gene expression changes of biomarkers involved in the Warburg effect, cell cycle control, and survival to identify the best molecular targets to be knocked-down, among those directly activated by the HIF-1α transcription factor. By this approach, glut-3 and pdk-1 genes were chosen, and the effects of their morpholino-induced gene silencing were evaluated by exploring the proliferative rates and the molecular modifications of the above-mentioned biomarkers. We found that, after combined treatments, glut-3 gene knockdown induced a greater decrease in cell proliferation, compared to pdk-1 gene knockdown and strong upregulation of glut-1 and ldha, as a sign of cell response to restore the anaerobic glycolysis pathway. Overall, glut-3 gene knockdown offered a better chance of controlling the anaerobic use of pyruvate and a better proliferation rate reduction, suggesting it is a suitable silencing target to overcome radioresistance.


Assuntos
Glioblastoma , Transportador de Glucose Tipo 3 , Humanos , Biomarcadores/metabolismo , Hipóxia Celular/genética , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Glioblastoma/genética , Glioblastoma/radioterapia , Glioblastoma/metabolismo , Hipóxia , Transportador de Glucose Tipo 3/genética , Transportador de Glucose Tipo 3/metabolismo
11.
Biomol Concepts ; 15(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38345457

RESUMO

5-Hydroxy-3',4',6,7-tetramethoxyflavone (TMF) is a plant-origin flavone known for its anti-cancer properties. In the present study, the cytotoxic effect of TMF was evaluated in the U87MG and T98G glioblastoma (GBM) cell lines. The effect of TMF on cell viability was assessed with trypan blue exclusion assay and crystal violet staining. In addition, flow cytometry was performed to examine its effect on the different phases of the cell cycle, and in vitro scratch wound assay assessed the migratory capacity of the treated cells. Furthermore, the effect of in vitro radiotherapy was also evaluated with a combination of TMF and radiation. In both cell lines, TMF treatment resulted in G0/G1 cell cycle arrest, reduced cell viability, and reduced cell migratory capacity. In contrast, there was an antagonistic property of TMF treatment with radiotherapy. These results demonstrated the antineoplastic effect of TMF in GBM cells in vitro, but the antagonistic effect with radiotherapy indicated that TMF should be further evaluated for its possible antitumor role post-radiotherapy.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/radioterapia , Glioblastoma/metabolismo , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/metabolismo , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proliferação de Células , Apoptose , Sobrevivência Celular
12.
Cell Death Dis ; 15(2): 160, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383492

RESUMO

Dysregulation of anti-apoptotic and pro-apoptotic protein isoforms arising from aberrant splicing is a crucial hallmark of cancers and may contribute to therapeutic resistance. Thus, targeting RNA splicing to redirect isoform expression of apoptosis-related genes could lead to promising anti-cancer phenotypes. Glioblastoma (GBM) is the most common type of malignant brain tumor in adults. In this study, through RT-PCR and Western Blot analysis, we found that BCLX pre-mRNA is aberrantly spliced in GBM cells with a favored splicing of anti-apoptotic Bcl-xL. Modulation of BCLX pre-mRNA splicing using splice-switching oligonucleotides (SSOs) efficiently elevated the pro-apoptotic isoform Bcl-xS at the expense of the anti-apoptotic Bcl-xL. Induction of Bcl-xS by SSOs activated apoptosis and autophagy in GBM cells. In addition, we found that ionizing radiation could also modulate the alternative splicing of BCLX. In contrast to heavy (carbon) ion irradiation, low energy X-ray radiation-induced an increased ratio of Bcl-xL/Bcl-xS. Inhibiting Bcl-xL through splicing regulation can significantly enhance the radiation sensitivity of 2D and 3D GBM cells. These results suggested that manipulation of BCLX pre-mRNA alternative splicing by splice-switching oligonucleotides is a novel approach to inhibit glioblastoma tumorigenesis alone or in combination with radiotherapy.


Assuntos
Glioblastoma , Precursores de RNA , Humanos , Processamento Alternativo/genética , Apoptose/genética , Proteína bcl-X/genética , Proteína bcl-X/metabolismo , Glioblastoma/genética , Glioblastoma/radioterapia , Oligonucleotídeos/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA/genética
13.
J Neurooncol ; 167(2): 295-303, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38383875

RESUMO

PURPOSE: We aimed to evaluate the prognostic factors and the role of stereotactic radiotherapy (SRT) as a re-irradiation technique in the management of progressive glioblastoma. METHODS: The records of 77 previously irradiated glioblastoma patients who progressed and received second course hypofractionated SRT (1-5 fractions) between 2009 and 2022 in our department were evaluated retrospectively. Statistical Package for the Social Sciences (SPSS) version 23.0 (IBM, Armonk, NY, USA) was utilized for all statistical analyses. RESULTS: The median time to progression from the end of initial radiotherapy was 14 months (range, 6-68 months). The most common SRT schedule was 30 Gy (range, 18-50 Gy) in 5 fractions (range, 1-5 fractions). The median follow-up after SRT was 9 months (range, 3-80 months). One-year overall (OS) and progression-free survival (PFS) rates after SRT were 46% and 35%, respectively. Re-irradiation dose and the presence of pseudoprogression were both significant independent positive prognostic factors for both OS (p = 0.009 and p = 0.04, respectively) and PFS (p = 0.008 and p = 0.04, respectively). For PFS, progression-free interval > 14 months was also a prognostic factor (p = 0.04). The treatment was well tolerated without significant acute toxicity. During follow-up, radiation necrosis was observed in 17 patients (22%), and 14 (82%) of them were asymptomatic. CONCLUSION: Hypofractionated SRT is an effective treatment approach for patients with progressive glioblastoma. Younger patients who progressed later than 14 months, received higher SRT doses, and experienced pseudoprogression following SRT had improved survival rates.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Radiocirurgia , Reirradiação , Humanos , Glioblastoma/radioterapia , Glioblastoma/cirurgia , Glioblastoma/tratamento farmacológico , Neoplasias Encefálicas/cirurgia , Estudos Retrospectivos , Recidiva Local de Neoplasia/tratamento farmacológico , Fracionamento da Dose de Radiação , Radiocirurgia/métodos
14.
Int J Mol Sci ; 25(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38256047

RESUMO

Radiation therapy is commonly used to treat glioblastoma multiforme (GBM) brain tumors. Ionizing radiation (IR) induces dose-specific variations in transcriptional programs, implicating that they are tightly regulated and critical components in the tumor response and survival. Yet, our understanding of the downstream molecular events triggered by effective vs. non-effective IR doses is limited. Herein, we report that variations in the genetic programs are positively and functionally correlated with the exposure to effective or non-effective IR doses. Genome architecture analysis revealed that gene regulation is spatially and temporally coordinated with DNA repair kinetics. The radiation-activated genes were pre-positioned in active sub-nuclear compartments and were upregulated following the DNA damage response, while the DNA repair activity shifted to the inactive heterochromatic spatial compartments. The IR dose affected the levels of DNA damage repair and transcription modulation, but not the order of the events, which was linked to their spatial nuclear positioning. Thus, the distinct coordinated temporal dynamics of DNA damage repair and transcription reprogramming in the active and inactive sub-nuclear compartments highlight the importance of high-order genome organization in synchronizing the molecular events following IR.


Assuntos
Glioblastoma , Radiação Ionizante , Humanos , Reparo do DNA/genética , Radiação não Ionizante , Transporte Biológico , Glioblastoma/genética , Glioblastoma/radioterapia
15.
Neurochirurgie ; 70(2): 101532, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38215936

RESUMO

BACKGROUND: The role of Gamma Knife radiosurgery (GKRS) in recurrent glioblastoma remains unclear. The purpose of this study is to evaluate the effects of GKRS in a group of patients with recurrent glioblastoma, focusing on survival and safety. METHODS: Patients undergoing GKRS for recurrent glioblastoma between September 2014 and April 2019 were included in this study. Relevant clinical and radiosurgical data, including GKRS-related complications, were recorded and analyzed. Overall survival (OS), local progression free survival (LPFS) and prognostic factors for outcome were thoroughly evaluated. RESULTS: Fifty-three patients were analyzed (24 female, 29 male). The median age was 50 years (range, 19-78 years). The median GKRS treatment volume was 35.01 cm3 (range, 2.38-115.57 cm3). Twenty patients (38%) were treated with single fraction GKRS, while 33 (62%) were treated with GKRS-based hypofractionated stereotactic radiotherapy (HSRT). The median prescription dose for single fraction GKRS, 3-fractions HSRT and 5-fractions HSRT were 16 Gy (range, 10-20 Gy), 27 Gy (range, 18-33 Gy) and 25 Gy (range, 25-30 Gy), respectively. The median LPFS and OS times were 8.1 months and 11.4 months after GKRS, respectively. HSRT and Bevacizumab were associated with improved LPFS, while HSRT alone was associated with longer OS. CONCLUSION: Our findings suggested that HRST would likely improve LPFS and OS in definite settings; the addition of Bevacizumab to GKRS was associated with increased rates of local control. No major complications were reported. Further prospective studies are warranted to confirm our findings.


Assuntos
Glioblastoma , Radiocirurgia , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Glioblastoma/radioterapia , Glioblastoma/cirurgia , Bevacizumab , Resultado do Tratamento , Intervalo Livre de Progressão , Estudos Retrospectivos , Seguimentos
17.
Int J Radiat Oncol Biol Phys ; 118(5): 1371-1378, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38211641

RESUMO

PURPOSE: Patients with glioblastoma who are older or have poor performance status (PS) experience particularly poor clinical outcomes. At the time of study initiation, these patients were treated with short-course radiation therapy (40 Gy in 15 fractions). Olaparib is an oral inhibitor of the DNA repair enzyme poly (ADP-ribose) polymerase (PARP) that is well tolerated as a single agent but exacerbates acute radiation toxicity in extracranial sites. Preclinical data predicted that PARP inhibitors would enhance radiosensitivity in glioblastoma without exacerbating adverse effects on the normal brain. METHODS AND MATERIALS: Phase 1 of the PARADIGM trial was a 3+3 dose-escalation study testing olaparib in combination with radiation therapy (40 Gy 15 fractions) in patients with newly diagnosed glioblastoma who were unsuitable for radical treatment either because they were aged 70 years or older (World Health Organization PS 0-1) or aged 18 to 69 years with PS 2. The primary outcome was the recommended phase 2 dose of olaparib. Secondary endpoints included safety and tolerability, overall survival, and progression-free survival. Effects on cognitive function were assessed via the Mini Mental State Examination. RESULTS: Of 16 eligible patients (56.25% male; median age, 71.5 years [range, 44-78]; 75% PS 0-1), 1 dose-limiting toxicity was reported (grade 3 agitation). Maximum tolerated dose was not reached and the recommended phase 2 dose was determined as 200 mg twice daily. Median overall survival and progression-free survival were 10.8 months (80% CI, 7.3-11.4) and 5.5 months (80% CI, 3.9-5.9), respectively. Mini Mental State Examination plots indicated that cognitive function was not adversely affected by the olaparib-radiation therapy combination. CONCLUSIONS: Olaparib can be safely combined with hypofractionated brain radiation therapy and is well tolerated in patients unsuitable for radical chemoradiation. These results enabled initiation of a randomized phase 2 study and support future trials of PARP inhibitors in combination with radiation therapy for patients with brain tumors.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Piperazinas , Humanos , Masculino , Idoso , Feminino , Glioblastoma/tratamento farmacológico , Glioblastoma/radioterapia , Inibidores de Poli(ADP-Ribose) Polimerases/efeitos adversos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Ftalazinas/efeitos adversos
19.
Radiat Oncol ; 19(1): 11, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254201

RESUMO

BACKGROUND: Despite improvements in surgical as well as adjuvant therapies over the last decades, the prognosis for patients with glioblastoma remains poor. Five-Aminolevulinic acid (5-ALA) induced porphyrins are already used for fluorescence-guided resection and as photosensitizer for photodynamic therapy. New findings reveal their potential use as sensitizing agents in combination with ionizing radiation. METHODS: We initiated a phase I/II dose escalation study, treating patients with recurrence of glioblastoma with oral 5-ALA concurrent to radiotherapy (RT). This prospective single-center study based in the University Hospital Münster aims to recruit 30 patients over 18 years of age with histologically verified recurrence of supratentorial glioblastoma in good performance status (KPS ≥ 60). Following a 3 + 3 dose-escalation design, patients having undergone re-resection will receive a 36 Gy RT including radiodynamic therapy fractions (RDT). RDT constitutes of oral administration of 5-ALA before the irradiation session. Two cohorts will additionally receive two fractions of neoadjuvant treatment three and two days before surgery. To determine the maximum tolerated dose of repeated 5-ALA-administration, the number of RDT-fractions will increase, starting with one to a maximum of eight fractions, while closely monitoring for safety and toxicity. Follow-up will be performed at two and five months after treatment. Primary endpoint will be the maximum tolerated dose (MTD) of repeated ALA-administration, secondary endpoints are event-free-, progression-free-, and overall-survival. Additionally, 5-ALA metabolites and radiobiological markers will be analysed throughout the course of therapy and tissue effects after neoadjuvant treatment will be determined in resected tissue. This protocol is in accordance with the SPIRIT guidelines for clinical trial protocols. DISCUSSION: This is the protocol of the ALA-RDT in GBM-study, the first-in-man evaluation of repeated administration of 5-ALA as a radiosensitizer for treatment of recurrent glioblastoma. TRIAL REGISTRATION: This study was approved by the local ethics committee of the Medical Association of Westphalia-Lippe and the University of Münster on 12.10.2022, the German federal institute for Drugs and medical devices on 13.10.2022 and the federal office for radiation protection on 29.08.2022. This trial was registered on the public European EudraCT database (EudraCT-No.: 2021-004631-92) and is registered under www.cliniclatrials.gov (Identifier: NCT05590689).


Assuntos
Ácido Aminolevulínico , Glioblastoma , Humanos , Adolescente , Adulto , Glioblastoma/radioterapia , Estudos Prospectivos , Recidiva Local de Neoplasia/terapia , Terapia Combinada , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto
20.
J Neurooncol ; 166(1): 89-98, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38175460

RESUMO

INTRODUCTION: Glioblastoma (GBM) is the most common central nervous system malignancy in adults. Despite decades of developments in surgical management, radiation treatment, chemotherapy, and tumor treating field therapy, GBM remains an ultimately fatal disease. There is currently no definitive standard of care for patients with recurrent glioblastoma (rGBM) following failure of initial management. OBJECTIVE: In this retrospective cohort study, we set out to examine the relative effects of bevacizumab and Gamma Knife radiosurgery on progression-free survival (PFS) and overall survival (OS) in patients with GBM at first-recurrence. METHODS: We conducted a retrospective review of all patients with rGBM who underwent treatment with bevacizumab and/or Gamma Knife radiosurgery at Roswell Park Comprehensive Cancer Center between 2012 and 2022. Mean PFS and OS were determined for each of our three treatment groups: Bevacizumab Only, Bevacizumab Plus Gamma Knife, and Gamma Knife Only. RESULTS: Patients in the combined treatment group demonstrated longer post-recurrence median PFS (7.7 months) and median OS (11.5 months) compared to glioblastoma patients previously reported in the literature, and showed improvements in total PFS (p=0.015), total OS (p=0.0050), post-recurrence PFS (p=0.018), and post-recurrence OS (p=0.0082) compared to patients who received either bevacizumab or Gamma Knife as monotherapy. CONCLUSION: This study demonstrates that the combined use of bevacizumab with concurrent stereotactic radiosurgery can have improve survival in patients with rGBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Radiocirurgia , Adulto , Humanos , Bevacizumab/uso terapêutico , Glioblastoma/radioterapia , Glioblastoma/tratamento farmacológico , Radiocirurgia/efeitos adversos , Estudos Retrospectivos , Neoplasias Encefálicas/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...